The model provides a Hugging Face Inference Endpoint for programmatic access.
1. Test Basic DevOps Question:
curl --max-time 300 -X POST \
"https://bcg2lrpnfylqamcz.us-east-1.aws.endpoints.huggingface.cloud" \
-H "Content-Type: application/json" \
-d '{
"inputs": "How do I deploy a microservice to Kubernetes?",
"parameters": {"max_new_tokens": 100, "temperature": 0.7}
}'
2. Test Container Security Question:
curl --max-time 300 -X POST \
"https://bcg2lrpnfylqamcz.us-east-1.aws.endpoints.huggingface.cloud" \
-H "Content-Type: application/json" \
-d '{
"inputs": "What are the best practices for container security?",
"parameters": {"max_new_tokens": 150, "temperature": 0.5}
}'
3. Test Docker Optimization:
curl --max-time 300 -X POST \
"https://bcg2lrpnfylqamcz.us-east-1.aws.endpoints.huggingface.cloud" \
-H "Content-Type: application/json" \
-d '{
"inputs": "How do I optimize a Docker image for production?",
"parameters": {"max_new_tokens": 200, "temperature": 0.7}
}'
4. Test CI/CD Pipeline:
curl --max-time 300 -X POST \
"https://bcg2lrpnfylqamcz.us-east-1.aws.endpoints.huggingface.cloud" \
-H "Content-Type: application/json" \
-d '{
"inputs": "How do I set up a CI/CD pipeline for a Python project?",
"parameters": {"max_new_tokens": 180, "temperature": 0.6}
}'
5. Test Health Check:
curl "https://bcg2lrpnfylqamcz.us-east-1.aws.endpoints.huggingface.cloud"